Cite this: Org. Biomol. Chem., 2011, 9, 8062

Dynamic Article Links 🕟

Hydrolysis of 1-(X-substituted-benzoyl)-4-aminopyridinium ions: effect of substituent X on reactivity and reaction mechanism[†][‡]

Ik-Hwan Um,* Eun-Hee Kim and Ji-Sun Kang

Received 10th July 2011, Accepted 1st September 2011 DOI: 10.1039/c1ob06137b

A kinetic study is reported for hydrolysis of 1-(X-substituted-benzoyl)-4-aminopyridinium ions **2a**-i, which were generated *in situ* from the nucleophilic substitution reaction of 2,4-dinitrophenyl X-substituted-benzoates **1a**-i with 4-aminopyridine in 80 mol% H₂O/20 mol% DMSO at 25.0 ± 0.1 °C. The plots of pseudo-first-order rate constants k_{obsd} vs. pyridine concentration are linear with a large positive intercept, indicating that the hydrolysis of **2a**-i proceeds through pyridine-catalyzed and uncatalyzed pathways with the rate constant k_{cat} and k_o , respectively. The Hammett plots for k_{cat} and k_o consist of two intersecting straight lines, which might be taken as evidence for a change in the rate-determining step (RDS). However, it has been proposed that the nonlinear Hammett plots are not due to a change in the RDS but are caused by stabilization of **2a**-i in the ground state through a resonance interaction between the π -electron-donor substituent X and the carbonyl functionality. This is because the corresponding Yukawa-Tsuno plots exhibit excellent linear correlations with $\rho_x = 1.45$ and r = 0.76 for k_{cat} while $\rho_x = 1.39$ and r = 0.72 for k_o . A possibility that the hydrolysis of **2a**-i proceeds through a concerted mechanism has been ruled out on the basis of the large ρ_x values. Thus, the reaction has been concluded to proceed through a stepwise mechanism in which the leaving group departs after the RDS since OH⁻ is more basic and a poorer nucleofuge than 4-aminopyridine.

Introduction

The Yukawa-Tsuno eqn (1) was originally derived to account for the resonance effect in decomposition of ω -diazoacetophenones in acetic acid.¹ The *r* value in eqn (1) represents the resonance demand of the reaction center or the extent of resonance contribution, while the term ($\sigma_x^+ - \sigma_x^\circ$) is the resonance substituent constant that measures the capacity for π -delocalization of the π -electron donor substituent.¹ Eqn (1) becomes the Hammett equation when r = 0, but becomes the Brown-Okamoto equation when r = 1. It has widely been accepted that eqn (1) is a powerful tool for investigation of resonance effects in solvolyses of benzylic and related systems, in which a partial positive charge is developing in the transition state (TS).¹⁻³

$$\log \left(k_{\rm X} / k_{\rm H} \right) = \rho_{\rm X} \left[\sigma_{\rm X}^{\circ} + r (\sigma_{\rm X}^{+} - \sigma_{\rm X}^{\circ}) \right] \tag{1}$$

We have shown that eqn (1) is highly effective in clarifying ambiguities in reaction mechanisms for nucleophilic substitution reactions of various types of esters.⁴⁻⁷ It is well known that reactions of esters with amines proceed through a concerted mechanism or through a stepwise pathway depending on reaction conditions (e.g., the nature of the electrophilic center and reaction medium).4-11 Aminolysis of X-substituted phenyl diphenylphosphinates has been reported to proceed through a concerted mechanism since the kinetic data result in an excellent linear Yukawa-Tsuno plot with $\rho_x = 1.91$ and r = 0.30.^{7a} A similar conclusion has been drawn for the corresponding reactions of X-substituted phenyl diphenylphosphinothioates.7d In contrast, aminolysis of carboxylic esters possessing a good leaving group (e.g., 2,4-dinitrophenoxide) has been reported to proceed through a stepwise mechanism on the basis of a curved Brønsted-type plot.^{4,8-11} The rate-determining step (RDS) has been suggested to be dependent on the basicity of the incoming amine and the leaving group, *i.e.*, the RDS changes from the breakdown of a zwitterionic tetrahedral intermediate T^{\pm} to its formation as the incoming amine becomes more basic than the leaving group by 4 to 5 pK_a units or the leaving group becomes less basic than the amine.^{4,8-11}

Pyridinolysis of esters has also intensively been investigated and the reaction mechanisms are fairly well understood.^{4a,12-15} It has been reported that reactions of pyridines with acid derivatives including esters produce acylpyridinium ions, which hydrolyze in H₂O.^{4a,12-15} Although scattered information on hydrolysis of acylpyridinium ions is available, the reaction mechanism is not yet clearly understood.^{12,13,14a} Castro *et al.* have recently investigated pyridine-catalyzed hydrolysis of

Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea. E-mail: ihum@ewha.ac.kr

[†] This paper is dedicated with respect and affection to the late Professor Yuho Tsuno a true gentleman and an inspiring mentor.

[‡] Electronic supplementary information (ESI) available: Kinetic conditions and results for hydrolysis of **2a–i** with 4-aminopyridine (Tables S1– S9), plots of k_{obsd} vs. 4-aminopyridine concentration (Figs. S1–S8), and ¹H NMR spectra for 2,4-dinitrophenyl X-substituted benzoates **1a–i** (Figs. S9–S17). See DOI: 10.1039/c1ob06137b

1-(aryloxythiocarbonyl)pyridinium ions, generated *in situ* from the reactions of phenyl and 4-nitrophenyl chlorothioformates with five diffefernt Y-substituted pyridines (Y = 3,4-Me₂, 4-Me, H, 3-COMe, and 4-CN) in H₂O.^{14a} They have shown that the rate constant for pyridine-catalyzed hydrolysis of the pyridinium ions increases only slightly as pyridine basicity increases, *e.g.*, the slope of the Brønsted-type plots is *ca*. 0.2. The small Brønsted coefficient has been attributed to the fact that as pK_a increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding acylpyridinium ions.^{14a}

We have recently reported that pyridinolysis of 2,4dinitrophenyl X-substituted benzoates **1a–i** proceeds through a stepwise mechanism, in which the RDS is dependent on the basicity of the incoming pyridine (Scheme 1).^{4a} However, it has been shown that the electronic nature of the substituent X in the benzoyl moiety does not affect the RDS, since the Yukawa-Tsuno plots exhibit excellent linear correlations with $\rho_x = 0.92 \sim 1.31$ and $r = 0.79 \sim 0.92$.^{4a}

Scheme 1 Pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates 1a–i.

We have now carried out hydrolysis of 1-(X-substitutedbenzoyl)-4-aminopyridinium ions $2\mathbf{a}$ -i, generated *in situ* from the reactions of $1\mathbf{a}$ -i with 4-aminopyridine. The reactions of $2\mathbf{a}$ -i were carried out in a self-buffered solution (*i.e.*, 4-aminopyridine/4aminopyridinium-ion = 1.0/1.0) to investigate the effect of the substituent X on the reaction mechanism. The hydrolysis of $2\mathbf{e}$ was also performed in 5-different buffered solutions (*i.e.*, 4-aminopyridine/4-aminopyridinium-ion = 3.0/1.0, 2.0/1.0, 1.0/1.0, 1.0/1.9, and 1.0/2.9) to characterize the reacting species. Analysis of our kinetic data using the Yukawa-Tsuno equation has led us to conclude that the hydrolysis of $2\mathbf{a}$ -i proceeds through a stepwise mechanism with the first step being the RDS for both pyridine-catalyzed and uncatalyzed reactions (Scheme 2).

Results and discussion

All reactions in this study obeyed pseudo-first-order kinetics in the presence of a large excess of 4-aminopyridine compared with the substrate. Pseudo-first-order rate constants (k_{obsd}) were calculated from the equation, $\ln (A_{\infty} - A_i) = -k_{obsd}t + c$. The plots of $k_{obsd} vs$. pyridine concentration were linear with a large positive intercept

Table 1Summary of kinetic data for the hydrolysis of 1-(X-substituted benzoyl)-4-aminopyridinium ions (2a–i) in 80 mol% $H_2O/20$ mol% DMSO at 25.0 ± 0.1 °C

	Х	$10^2 k_{\rm cat} / {\rm M}^{-1} {\rm s}^{-1}$	$10^3 k_{\rm o}/{\rm s}^{-1}$
2a	4-NMe	0.518	0.204
2b	4-MeO	11.6	4.08
2c	4-Me	27.3	8.84
2d	3-Me	46.1	13.4
2e	Н	60.1	18.0
2f	4-C1	107	37.8
2g	3-C1	226	64.0
2ĥ	4-CN	760	135
2i	4-Cl-3-NO ₂	965	310

(Fig. 1 and Figs. S1–S8 in the ESI), indicating that the contribution of H₂O and/or OH⁻ ion from hydrolysis of 4-aminopyridine to k_{obsd} is significant. Thus, one can derive a rate equation as eqn (2), in which k_{cat} and k_o represent the second-order rate constant for the pyridine-catalyzed reactions and the first-order rate constant for the uncatalyzed reactions (*i.e.*, the reactions with H₂O and/or OH⁻), respectively. Thus, the k_{cat} and k_o values were determined from the slope and intercept of the linear plots of k_{obsd} vs. pyridine concentration, respectively. The uncertainty in these values is estimated to be less than 3% from replicate runs. The k_{cat} and k_o values calculated are summarized in Table 1.

$$k_{\rm obsd} = k_{\rm cat} [4-aminopyridine] + k_{\rm o}$$
(2)

Effect of substituent X on reactivity and mechanism

As shown in Table 1, k_{cat} increases as the substituent X on the benzoyl moiety of **2a–i** changes from an electron-donating group (EDG) to an electron-withdrawing group (EWG), *e.g.*, it increases from $5.18 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$ to 6.01×10^{-1} and $9.65 \text{ M}^{-1} \text{s}^{-1}$ as X changes from 4-NMe₂ to H and 4-Cl-3-NO₂, in turn. A similar result is shown for k_o , although the magnitude of k_o is smaller than that of k_{cat} .

The effect of the substituent X on the reactivity of **2a–i** is illustrated in Fig. 2. One can see that each Hammett plot consists of two intersecting straight lines (*i.e.*, $\rho_X = 2.38 \sim 2.53$ for substrates possessing EDGs while $\rho_X = 1.30 \sim 1.39$ for those bearing EWGs). Traditionally, nonlinear Hammett plots have been taken as evidence for a change in the reaction mechanism or RDS depending on the shape of curvature.¹⁶ Upward curvature often found for nucleophilic substitution reactions of benzylic systems has been interpreted as a change in mechanism, *i.e.*, from S_N1 for substrates possessing an EDG to S_N2 for those bearing an EWG.¹⁶

X = 4-NMe₂ (a), 4-MeO (b), 4-Me (c), 3-Me (d), H (e), 4-Cl (f), 3-Cl (g), 4-CN(h), 4-Cl-3-NO₂ (i).

Scheme 2 Hydrolysis of 1-(X-substituted benzoyl)-4-aminopyridinium ions 2a-i.

Fig. 1 Plot of k_{obsd} vs. 4-aminopyridine concentration for the hydrolysis of 1-benzoyl-4-aminopyridinium ion **2e** in 80 mol% H₂O/20 mol% DMSO at 25.0 \pm 0.1 °C.

Fig. 2 Hammett plots for the hydrolysis of **2a**–i in 80 mol% H₂O/20 mol% DMSO at 25.0 ± 0.1 °C: (\bigcirc for k_{cat} and \bullet for k_o). The identity of the points is given in Table 1.

in RDS upon changing the substituent from EDGs to EWGs.¹⁶ In fact, the downward Hammett plot found for reactions of a series of X-substituted benzaldehydes with semicarbarzide in a weakly acidic medium (*e.g.*, pH = 3.9) has been concluded to be a change in RDS.^{16b}

Accordingly, one might suggest that the nonlinear Hammett plots in Fig. 2 are due to a change in RDS, *i.e.*, from the formation of an intermediate to its breakdown to yield the reaction products as the substituent X in the benzoyl moiety of **2a**-i changes from EDGs to EWGs. This idea appears to be reasonable for the pyridine-catalyzed process, since one might expect that an EDG in the benzoyl moiety would retard nucleophilic attack (*i.e.*, a decrease in k_3 in Scheme 2) but would accelerate departure of the leaving group (*i.e.*, an increase in k_4 in Scheme 2). In contrast, an EWG would increase k_3 but decrease k_4 . Thus, the nonlinear Hammett plot might be interpreted as a change in RDS upon changing the substituent X in the benzoyl moiety of **2a–i** from EDGs to EWGs.

Origin of the nonlinear Hammett plot

However, we propose that the nonlinear Hammett plots shown in Fig. 2 are not due to a change in the RDS on the basis of the following reasons: (1) The RDS should be determined by the k_4/k_{-3} ratio (*i.e.*, RDS = the k_3 step when $k_4/k_{-3} > 1$ or RDS = the k_4 step when $k_4/k_{-3} < 1$) but not by the magnitude of k_3 and k_4 . Furthermore, k_3 and k_4 values cannot be compared directly since the former is a second-order rate constant while the latter is a first-order rate constant. (2) Both k_4 and k_{-3} processes would be accelerated by an EDG in the benzoyl moiety but would be retarded by an EWG, since the nuclefuges depart with the bonding electrons. Thus, the k_4/k_{-3} ratio would be independent of the electronic nature of the substituent X in the benzoyl moiety.

The origin of the nonlinear Hammett plots that we propose is stabilization of pyridinium ions **2a–i** in the ground state (GS) through resonance interactions as modeled by resonance structures I and II. Such resonance interactions would stabilize their GS and cause a decrease in their reactivity, as suggested previously for solvolysis of methyl chloroformate.¹⁷ This idea is consistent with the fact that the pyridinium ions possessing an EDG in the benzoyl moiety deviate negatively from the linear Hammett plot composed of those bearing EWGs (*i.e.*, **2e–i**). Furthermore, such negative deviation is more significant for the pyridinium ion bearing a stronger EDG.

$$\begin{array}{c} Me & Me & Me & Pi \\ Me & Ne & Ne & Ne & Ne & Ne \\ Me & Ne & Ne & Ne & Ne \\ I & II \\ \end{array}$$

To examine the validity of the above argument, Yukawa–Tsuno plots have been constructed. As shown in Fig. 3, the Yukawa–Tsuno plots exhibits excellent linear correlation with $\rho_x = 1.45$ and r = 0.76 for the catalyzed reaction while $\rho_x = 1.39$ and r = 0.72 for the uncatalyzed process. The linear Yukawa–Tsuno plots clearly indicate that the nonlinear Hammett plots are not due to a change in RDS but are caused by the stabilization of **2a–i** in the GS through resonance interactions as mentioned above. This idea is consistent with our previous proposal that deduction of reaction mechanisms based solely on a linear or nonlinear Hammett plot can be misleading.⁴⁻⁶

Deduction of reaction mechanism

To investigate the reacting species, hydrolysis of **2e** has been performed in five different pyridine/pyridinium-ion buffer solutions (*i.e.*, pyridine/pyridinium-ion = 3.0/1.0, 2.0/1.0, 1.0/1.0, 1.0/1.9, and 1.0/2.9). The kinetic results are summarized in Table 2 and illustrated in Fig. 4A and 4B.

As shown in Fig. 4A, the plots of k_{obsd} vs. [pyridine]_{tot}, the total concentration of pyridine and pyridinium ion, are linear with

Table 2 Summary of the kinetic results for hydrolysis of 1-benzoyl-4-aminopyridinium ion 2e in 5 different pyridine/pyridinium-ion buffer solutions at 25.0 ± 0.1 °C

Pyridine/pyridinium-ion	pH	$10^3 k_{\rm cat} / {\rm M}^{-1} {\rm s}^{-1}$	$10^3 k_{\rm o}/{\rm s}^{-1}$
3.0/1.0	9.41	616	33.4
2.0/1.0	9.23	611	26.8
1.0/1.0	8.93	601	18.0
1.0/1.9	8.66	617	13.9
1.0/2.9	8.47	619	12.6

Fig. 3 Yukawa-Tsuno plots for the hydrolysis of **2a–i** in 80 mol% H₂O/20 mol% DMSO at 25.0 ± 0.1 °C: (\bigcirc for k_{cat} and \bigoplus for k_o). The identity of the points is given in Table 1.

Fig. 4 Plots of k_{obsd} vs. [4-aminopyridine]_{tot} (A) and k_{obsd} vs. [4-aminopyridine]_{free} (B) for hydrolysis of 1-benzoyl-4-aminopyridinium ion **2e** in 5 different pyridine/pyridinium-ion buffer solutions at 25.0 ± 0.1 °C. pyridine/pyridinium-ion = 3.0/1.0 (\blacksquare), 2.0/1.0 (\square), 1.0/1.0 (\blacklozenge), 1.0/1.9 (\diamondsuit), 1.0/2.9 (\blacktriangle).

different slopes and intercepts (*i.e.*, the slope and intercept decrease as the fraction of pyridine in the buffer solutions decreases). In contrast, the plots of k_{obsd} vs. [pyridine]_{free}, the concentration of the free pyridine, in Fig. 4B exhibit almost the same slope (*i.e.*, k_{cat} = $0.61 \pm 0.01 \text{ M}^{-1}\text{s}^{-1}$), although the intercept of the plots (*i.e.*, k_o) is dependent on the buffer ratios. It is noted that the intercepts in Fig. 4A are identical to those in Fig. 4B. Besides, one can get a rate constant of $0.61 \pm 0.01 \text{ M}^{-1}\text{s}^{-1}$ by dividing the slopes in Fig. 4A by the fraction of pyridine in the buffer solutions. These results indicate clearly that pyridine (but not pyridinium ion) catalyzes the reaction as a general-base catalyst and OH⁻ ion is also a nucleophilic species in this study.

To prove the above argument that OH⁻ ion is also a nucleophilic species in this study, the k_{0} values in Table 2 have been dissected into the rate constants for OH- and H₂O reactions. The rate constant measured for the hydrolysis of 2e in the absence of the pyridine/pyridinium-ion buffer is 0.0095 s⁻¹ (*i.e.*, the contribution of H₂O reaction to k_0).¹⁸ Since k_0 represents the total rate constants for the reactions with OH⁻ and H₂O, one can calculate the rate constant for the OH⁻ reaction by subtracting 0.0095 s⁻¹ from the k_{o} value determined from the intercept of the linear plots in Fig. 4. The pHs of the buffer solutions can be calculated from the Henderson–Hasselbalch equation using the pK_a value of 8.93 reported previously for 4-aminopyridinium ion in 80 mol% $H_2O/20$ mol% DMSO^{4e} and the buffer ratios employed in this study (Table 2). As shown in Fig. 5, the plot of log $(k_0 - 0.0095)$ vs. the pH of the reaction medium exhibits an excellent linear correlation with a slope of 0.97 ± 0.03 . This supports clearly the preceding argument that OH⁻ ion is a nucleophilic species in this study.

Fig. 5 Plot of log $(k_{\circ} - 0.0095)$ vs. pH of the reaction medium for the hydrolysis of 1-benzoyl-4-aminopyridinium ion **2e** in 80 mol% H₂O/20 mol% DMSO at 25.0 ± 0.1 °C.

The reaction of **2a–i** with OH⁻ ion would proceed through an S_N 2-like concerted mechanism with a TS structure similar to TS₁ or through a stepwise pathway with an intermediate. The latter mechanism can have one of the two TS structures (*i.e.*, TS₂ and TS₃) depending on the RDS, *i.e.*, TS₂ represents the TS structure in the rate-determining formation of the intermediate while TS_3 applies to that in the rate-determining breakdown of the intermediate.

It is well known that ρ_x for reactions which proceed through an $S_N 2$ mechanism is small (*e.g.*, $\rho_x = -0.2 \pm 0.1$ for solvolysis of 2-phenylethyl tosylates and benzyl tosylates, and $\rho_x = 0.3 \pm 0.1$ for nucleophilic substitution reactions of diaryl chlorophosphates with anilines).^{19,20} Thus, a small ρ_x value would be expected if the current reactions proceed through a concerted mechanism with a TS structure similar to TS₁. The ρ_x value of 1.45 or 1.39 for the current reactions appears to be too large for reactions which proceed through a concerted mechanism. Thus, one might suggest that the hydrolysis of **2a–i** proceeds through a stepwise mechanism with a TS structure similar to TS₂ or TS₃.

It is noted that OH^- ion is the nucleophilic species for both pyridine-catalyzed and uncatalyzed hydrolyses of **2a–i**. Furthermore, the ρ_x values for both processes are nearly the same (Fig. 3), indicating that the hydrolysis of **2a–i** proceeds through the same mechanism for both the pyridine-catalyzed and uncatalyzed processes. However, one might exclude the possibility that the reaction proceeds through TS₃, since OH^- is significantly more basic and a poorer nucleofuge than 4-aminopyridine. Accordingly, it is concluded that the hydrolysis of **2a–i** proceeds through a stepwise mechanism with a TS structure similar to TS₂.

Conclusions

The current study has allowed us to conclude the following: (1) Hydrolysis of 2a-i proceeds through pyridine-catalyzed and uncatalyzed pathways. (2) The Hammett plots for the pyridinecatalyzed and uncatalyzed reactions of 2a-i consist of two intersecting straight lines, while the corresponding Yukawa-Tsuno plots exhibit excellent linear correlations with $\rho_x = 1.39 \sim 1.45$ and $r = 0.72 \sim 0.76$. (3) The nonlinear Hammett plots are not due to a change in the RDS but are caused by stabilization of 2a-i in the GS through the resonance interaction between the π -electron donor substituent and the carbonyl functionality in the GS. (4) The possibility that the reactions of 2a-i proceed through a concerted mechanism has been ruled out on the basis of the large ρ_x values. (5) The hydrolysis of **2a**-i proceeds through a stepwise mechanism, in which the first step (i.e., attack of OH- ion to the carbonyl carbon atom of 2a-i) is the RDS, since OH⁻ ion is significantly more basic and a poorer nucleofuge than 4-aminopyridine.

Experimental

Materials

2,4-Dinitrophenyl X-substituted benzoates **1a–i** were prepared readily from the reactions of 2,4-dinitrophenol and X-substituted benzoyl chlorides in anhydrous ether in the presence of triethylamine as reported previously.^{8d,e} The crude products were purified through column chromatography. The purity of **1a–i** was checked by means of their melting points and ¹H NMR characteristics. Other chemicals used were of the highest quality. Doubly glassdistilled water was further boiled and cooled under nitrogen just before use.

Kinetics

The kinetic studies were performed at 25.0 ± 0.1 °C with a UV-Vis spectrophotometer equipped with a constant temperature circulating bath. The pyridine-catalyzed hydrolysis of 1-(X-substituted benzoyl)-4-aminopyridinium ions (i.e., 2a-i) was followed at 307 nm by monitoring the disappearance of the pyridinium ion obtained in situ from the reaction of 1a-i with 4-aminopyridine. All the reactions were carried out under pseudo-first-order conditions in which the concentration of 4-aminopyridine was at least 20 times greater than that of the substrate. Typically, reaction was initiated by adding 5 µL of 0.02 M of substrate 1a-i solution in MeCN by a 10 µL syringe into a 10 mm UV cell containing 2.50 mL of the reaction medium and 4-aminopyridine. The pyridine stock solution of ca. 0.2 M was prepared in a 25.0 mL volumetric flask under nitrogen by adding 2 equiv. of 4-aminopyridine to 1 equiv. of standardized HCl solution in order to obtain a 1:1 self-buffered solution. All the transfers of reaction solutions were carried out by means of gas-tight syringes.

Acknowledgements

This research was supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by Ministry of Education, Science and Technology (2009-0075488). E. H. Kim and J. S. Kang are grateful for the BK 21 Scholarship.

References

- (a) Y. Tsuno and M. Fujio, Adv. Phys. Org. Chem., 32, 267–385; (b) Y. Tsuno and M. Fujio, Chem. Soc. Rev., 1996, 25, 129–139; (c) Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Jpn., 1959, 32, 960–965.
- K. Nakata, M. Fujio, K. Nishimoto and Y. Tsuno, J. Phys. Org. Chem., 2010, 23, 1057–1065; (b) R. Fujiyama, M. A. Alam, A. Aiko, T. Munechika, M Fujio and Y. Tsuno, J. Phys. Org. Chem., 2010, 23, 819–827; (c) S. Than, M. M. R. Badal, S. Itoh and M. Mishima, J. Phys. Org. Chem., 2010, 23, 411–417; (d) S. Toh, M. M. R. Badal and M. Mishima, J. Phys. Chem. A, 2009, 113, 10075–10080.
- 3 (a) S. Than, H. Maeda, M. Irie, K. Kikukawa and M. Mishima, *Int. J. Mass Spectrom.*, 2007, **267**, 205–214; (b) H. Maeda, M. Irie, S. Than, K. Kikukawa and M. Mishima, *Bull. Chem. Soc. Jpn.*, 2007, **80**, 195–203; (c) M. Fujio, M. A. Alam, Y. Umezaki, K. Kikukawa, R. Fujiyama and Y. Tsuno, *Bull. Chem. Soc. Jpn.*, 2007, **80**, 2378–2383.
- 4 (a) I. H. Um, L. R. Im, E. H. Kim and J. H. shin, Org. Biomol. Chem., 2010, 8, 3801–3806; (b) I. H. Um, Y. M. Park, M. Fujio, M. Mishima and Y. Tsuno, J. Org. Chem., 2007, 72, 4816–4821; (c) I. H. Um, J. Y. Lee, S. H. Ko and S. K. Bae, J. Org. Chem., 2006, 71, 5800–5803; (d) I. H. Um, S. E. Jeon and J. A. Seok, Chem.–Eur. J., 2006, 12, 1237–1243; (e) I. H. Um, S. J. Hwang, M. H. Baek and E. J. Park, J. Org. Chem., 2006, 71, 9191–9197.
- 5 (a) I. H. Um, E. H. Kim and J. Y. Lee, J. Org. Chem., 2009, 74, 1212– 1217; (b) I. H. Um, S. J. Hwang, S. Yoon, S. E. Jeon and S. K. Bae, J. Org. Chem., 2008, 73, 7671–7677; (c) I. H. Um, S. Yoon, H. R. Park and H. J. Han, Org. Biomol. Chem., 2008, 6, 1618–1624.
- 6 (a) I. H. Um, J. Y. Hong and J. A. Seok, J. Org. Chem., 2005, **70**, 1438– 1444; (b) I. H. Um, S. M. Chun, O. M. Chae, M. Fujio and Y. Tsuno, J. Org. Chem., 2004, **69**, 3166–3172; (c) I. H. Um, J. Y. Hong, J. J. Kim, O. M. Chae and S. K. Bae, J. Org. Chem., 2003, **68**, 5180–5185.
- 7 (a) I. H. Um, Y. H. Shin, J. Y. Han and M. Mishima, J. Org. Chem., 2006, **71**, 7715–7720; (b) I. H. Um, J. Y. Han and Y. H. Shin, J. Org. Chem., 2009, **74**, 3073–3078; (c) I. H. Um, J. Y. Han and S. J. Hwang,

Chem.-Eur. J., 2008, 14, 7324-7330; (d) I. H. Um, K. Akhtar, Y. H. Shin and J. Y. Han, J. Org. Chem., 2007, 72, 3823-3829.

- 8 (a) W. P. Jencks, *Chem. Rev.*, 1985, **85**, 511–527; (b) E. A. Castro, *Chem. Rev.*, 1999, **99**, 3505–3524; (c) M. I. Page, A. Williams, *Organic and Bioorganic Mechanisms*, Longman, Singapore, 1997, Chapter 7; (d) F. M. Menger and J. H. Smith, *J. Am. Chem. Soc.*, 1972, **94**, 3824–3829; (e) A. B. Maude and A. Williams, *J. Chem. Soc.*, *Perkin Trans.* 2, 1997, 179–183.
- 9 (a) E. A. Castro, M. Aliaga and J. G. Santos, J. Org. Chem., 2005, 70, 2679–2685; (b) E. A. Castro, M. Gazitua and J. G. Santos, J. Org. Chem., 2005, 70, 8088–8092; (c) B. Galabov, S. Ilieva, B. Hadjieva, Y. Atanasov and H. F. Schaefer III, J. Phys. Chem. A, 2008, 112, 6700–6707.
- 10 (a) H. K. Oh, J. Y. Oh, D. D. Sung and I. Lee, J. Org. Chem., 2005, 70, 5624–5629; (b) I. Lee and D. D. Sung, Curr. Org. Chem., 2004, 8, 557–567; (c) H. K. Oh, J. E. Park, D. D Sung and I. Lee, J. Org. Chem., 2004, 69, 9285–9288; (d) H. K. Oh, J. S. Ha, D. D. Sung and I. Lee, J. Org. Chem., 2004, 69, 8219–8223; (e) H. K. Oh, J. E. Park, D. D. Sung and I. Lee, J. Org. Chem., 2004, 69, 3150–3153.
- 11 (a) B. J. Lumbiny and H. W. Lee, Bull. Korean Chem. Soc., 2008, 29, 2065–2068; (b) H. K. Oh, J. M. Lee, H. W. Lee and I. C. Lee, Int. J. Chem. Kinet., 2004, 36, 434–440; (c) H. K. Oh, I. K. Kim, H. W. Lee and I. Lee, J. Org. Chem., 2004, 69, 3806–3810.
- 12 A. R. Fersht and W. P. Jencks, J. Am. Chem. Soc., 1970, 92, 5432–5442.
- 13 P. J. Battye, E. M. Ihsan and R. B. Moodie, *J. Chem. Soc., Perkin Trans.* 2, 1980, 741–748.
- 14 (a) E. A. Castro, M. Cubillos and J. G. Santos, J. Org. Chem., 2004,
 69, 4802–4807; (b) E. A. Castro, M. Ramos and J. G. Santos, J. Org. Chem., 2009, 74, 6374–6377; (c) E. A. Castro, M. Acuna, C. Soto, D. Trujillo, B. Vasquez and J. G. Santos, J. Phys. Org. Chem., 2008, 21, 816–822.

- 15 (a) H. K. Oh, Bull. Korean Chem. Soc., 2010, **31**, 2357–2360; (b) H. K. Oh, M. H. Ku, H. W. Lee and I. Lee, J. Org. Chem., 2002, **67**, 8995–8998; (c) H. K. Oh, M. H. Ku, H. W. Lee and I. Lee, J. Org. Chem., 2002, **67**, 3874–3877.
- 16 (a) F. A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry, Brooks/Cole, New York, 1998, pp. 371– 386; (b) W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, pp. 480–483; (c) T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Harper Collins Publishers, New York, 1987, pp. 143– 151.
- 17 Methyl chloroformate was reported to be 9×10^3 times less reactive than acetyl chloride due to GS stabilization through resonance interactions. D. N. Kevill, in *The Chemistry of the Functional Groups*. *The Chemistry of Acyl Halides*, ed. S. Patai, Wiley, New York, 1972, Chapter 12.
- 18 A reviewer has suggested that H₂O could be a nucleophilic species as well as a general base catalyst in the reaction of 2e in the absence of pyridine/pyridinium-ion buffer, as reported previously for hydrolyses of 4-methoxyphenyl-2,2-dichloroethanoate and 1-benzoyl-3-phenyl-1,2,4-triazole. (a) T. Rispens, C. Cabaleiro-Lago and J. B. F. N. Engberts, Org. Biomol. Chem., 2005, 3, 597–602; (b) N. J. Buurma, M. J. Blandamer and J. B. F. N. Engberts, J. Phys. Org. Chem., 2003, 16, 438–449.
- 19 (a) M. Fujio, K. Funatsu, M. Goto, Y. Seki, M. Mishima and Y. Tsuno, Bull. Chem. Soc. Jpn., 1987, **60**, 1091–1096; (b) M. Fujio, M. Goto, T. Susuki, I. Akasaka, M. Mishima and Y. Tsuno, Bull. Chem. Soc. Jpn., 1990, **63**, 1146–1151.
- 20 H. W. Lee, A. K. Guha and I. Lee, Int. J. Chem. Kinet., 2002, 34, 632–637.